Concurrent matching, localization and map building using invariant features
نویسندگان
چکیده
A common way of localization in robotics is using triangulation on a system composed of a sensor and some landmarks (which can be artificial or natural). First, when no identifying marks are set on the landmarks, their identification by a robust algorithm is a complex problem which may be solved thanks to correspondence graphs. Second, when the localization system has no a priori information about its environment, it has to build its own map in parallel with estimating its position, a problem known as the simultaneous localization and mapping (SLAM). Recent works have proposed to solve this problem based on building a map made of invariant features. This paper describes the algorithms and data structure needed to deal with landmark matching, robot localization and map building in a single efficient process, unifying the previous approaches. Experimental results are presented using an outdoor robot car equipped with a 2D scanning laser sensor.
منابع مشابه
3D Reconstruction of Scale-Invariant Features for Mobile Robot localization
A key component of autonomous navigation of intelligent home robot is localization and map building with recognized features from the environment. To validate this, accurate measurement of relative location between robot and features is essential. In this paper, we proposed relative localization algorithm based on 3D reconstruction of scale invariant features of two images which are captured fr...
متن کاملSimultaneous localization and mapping using the Geometric Projection Filter and correspondence graph matching
A common way of localization in robotics is using triangulation on a system composed of a sensor and some landmarks (which can be artificial or natural). First, when no identifying marks are set on the landmarks, their identification by a robust algorithm is a complex problem which may be solved using correspondence graphs. Second, when the localization system has no a priori information about ...
متن کاملMap-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملAppearance-based concurrent map building and localization
Appearance-based autonomous robot localization has some advantages over landmarkbased localization as, for instance, the simplicity of the processes applied to the sensor readings. The main drawback of appearance-based localization is that it requires a map including images taken at known positions in the environment where the robot is expected to move. In this paper, we describe a concurrent m...
متن کاملGlobal localization using distinctive visual features
We have previously developed a mobile robot system which uses scale invariant visual landmarks to localize and simultaneously build a 3D map of the environment In this paper, we look at global localization, also known as the kidnapped robot problem, where the robot localizes itself globally, without any prior location estimate. This is achieved by matching distinctive landmarks in the current f...
متن کامل